Das Verhalten von Triphenylchlormethan gegenüber Akzeptorchloriden in Phosphoroxychlorid und Tributylphosphat

Von

M. Baaz, V. Gutmann und J. R. Masaguer*

Aus dem Institut für Anorganische und Allgemeine Chemie der Technischen Hochschule Wien

Mit 2 Abbildungen

(Eingegangen am 16. März 1961)

In POCl₃ reagiert Ph₃CCl mit den Akzeptoren ZnCl₂, AlCl₃, FeCl₃, BCl₃, TiCl₄, SnCl₄, SbCl₅ und wahrscheinlich auch mit HgCl₂, SbCl₃ und PCl₅ im Verhältnis 1:1 unter Bildung von Ionenverbindungen des Typs [Ph₃C]⁺(MeCl_{n+1}]⁻. Die Akzeptorstärken nehmen in der Reihenfolge FeCl₃ > SbCl₅ ~ BCl₃ ~ SnCl₄ \geq TiCl₄ > AlCl₃ > ZnCl₂ > HgCl₂ > SbCl₃ > PCl₅ ab. In Bu₃PO₄ konnte mit den entsprechenden Metallehloriden keine Ionisation des Ph₃CCl nachgewiesen werden. Die Ergebnisse werden mit denen in PhPOCl₂ verglichen und der Einfluß des Lösungsmittels diskutiert.

Analog zu den Untersuchungen in Phenylphosphoroxychlorid¹ werden Reaktionen von Ph₃CCl mit einigen Akzeptorchloriden in Phosphoroxychlorid und Tributylphosphat beschrieben und aus dem Vergleich von Akzeptorstärken in POCl₃, PhPOCl₂ und Bu₃PO₄ Aussagen über den Einfluß des Lösungsmittels auf die Chloridionenakzeptorstärken gewonnen.

Bu₃PO₄ wurde mit 4proz. NaOH und 4proz. alkalischer KMnO₄-Lösung geschüttelt und nach dem Dekantieren destilliert. Sdp.₁₀: 155—160° C. Die Reinigung von POCl₃, Ph₃CCl und der anderen Chloride sowie die Durchführung der Messungen wurde an anderer Stelle beschrieben¹.

I. Lösungen in Phosphoroxychlorid

Nachweis des Carboniumions [Ph₃C]⁺: In POCl₃ sind Lösungen des Ph₃CCl farblos. Bei Zusatz von Metallehloriden entstehen gelbe Lösungen.

^{*} Dozent für Anorganische Chemie an der Universidad de Santiago de Compostela, Spanien.

¹ M. Baaz, V. Gutmann und J. R. Masaguer, Mh. Chem. **92**, 582 (1961).

In Abb. 1 sind die Spektren der Lösungen im Verhältnis 1:1 und von Ph_3CCl in $H_2SO_4^{2,3}$ als Standard für das Triphenylcarboniumion eingezeichnet. Die Kurven besitzen alle ein flaches Maximum zwischen 400 und 440 m μ , das wahrscheinlich als das unaufgelöste seichte Doppelmaximum

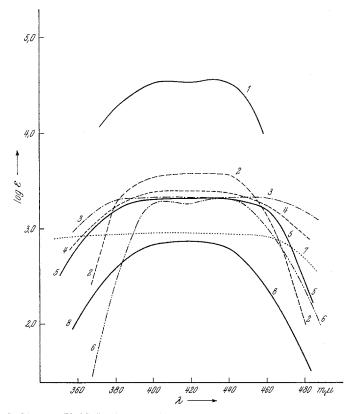


Abb. 1. Spektren von Ph₂CCI (im sichtbaren Gebiet) in PhPOCI₂ in Gegenwart von Akzeptorchloriden. Zum Vergleich die Kurve des Ph₃COH in $\rm H_2SO_4$ (1)

- (2) FeCl₃
- (6) TiCl₄
- (3) SbCl₅ (4) BCl₃ (5) SpCl
- (7) AlCl₃ (8) ZnCl₂
- (410 und 430 mμ) des [Ph₃C]⁺-Ions anzusehen ist. Auch die Lage der Bandenflanken stimmt bei ZnCl₂, SnCl₄, BCl₃ und FeCl₃ gut überein. Die Bande bei TiCl₄ ist etwas schmäler, die bei SbCl₅ etwas und die bei AlCl₃ als Akzeptor stark verbreitert. In allen Fällen handelt es sich um [Ph₃C]⁺-Ionen, obwohl ein Einfluß der Reaktionspartner auf das Spektrum feststellbar ist, ohne die Bande oder deren Maximum zu verschieben.

² A. Bentley, A.G. Evans und J. Halpern, Trans. Farad. Soc. 47, 711 (1951).

³ J. W. Bayles, J. L. Cotter und A. G. Evans, J. Chem. Soc. [London] **1955**, 3104.

Reaktionsverhältnis: Die Anwendung der Methode der kontinuierlichen Variation^{4,5} zeigt bei ZnCl₂, TiCl₄ und AlCl₃ scharfe und auch einigermaßen symmetrische Maxima bei x = 0.5. SbCl₅ hat ein flaches Maxi-

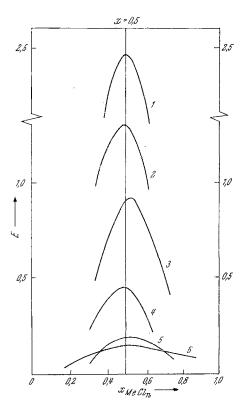


Abb. 2. Abhängigkeit der Extinktion vom Molenbruch im pseudobinären System Ph₃CCl-MeCl_D.

Die Lage der Maxima hinsichtlich x gibt das Reaktionsverhältnis an

- FeCl₃ SbCl₅
- (5) TiCl₄ AlCl₃ ZnCl₄
- $SnCl_4$

mum bei x = 0.5. HgCl₂, SbCl₃ und PCl₅ wurden nicht in Abhängigkeit von x gemessen. In POCl₃ reagiert Ph₃CCl auch mit sonst zweifach koordinierenden Akzeptoren wie ZnCl2, TiCl4 und SnCl4 im Verhältris 1:1.

Natur des Gleichgewichtes: Eine Analyse der Werte für ε bzw. α, ähnlich wie sie in PhPOCl₂ durchgeführt wurde¹, zeigt, daß mit Ausnahme der Reaktion mit ZnCl₂ eine einfache Form des Ionisationsgleichgewichtes

$$\begin{split} & \mathrm{Ph_3CCl} + \mathrm{MeCl_n} \rightleftharpoons \\ & [\mathrm{Ph_3C}]^+ [\mathrm{MeCl_{n+1}}]^- \end{split}$$

nicht vorliegt. Wahrscheinlich ist die Stärke der Assoziation der Metallchloride in POCl₃ dafür verantwortlich.

Umfang der Reaktionen: Tab. 1 enthält die Maxima der Extinktionskurven von Lösungen, die Ph3CCl mit den Metallchloriden im Verhältnis 1:1 bei $c \sim 10^{-3}$ enthalten; ebenso die daraus berechneten ε-Werte und die Bildungsgrade a. Die Ergebnisse in Abb. 1 und 2 können ebenfalls für die Feststellung der Reihung der Akzeptorstärken herangezogen

werden. Beim Maximum der Bande bei 430 mµ ist die Extinktion der BCl₃-Lösung größer als die der SbCl₅-Lösung, nicht aber an den Flanken der Banden, wo wegen Verbreiterung die Extinktion beim SbCl₅ größer ist als beim BCl₃. Der Unterschied zwischen den beiden Akzeptoren ist aber sehr gering.

⁴ P. Job, Ann. Chim. [10] 9, 113 (1928).

⁵ W. C. Vosburgh und G. R. Cooper, J. Amer. Chem. Soc. **63**, 437 (1941).

Allgemein sind die Akzeptorstärken in $POCl_3$ stark nivelliert. Sie nehmen in der Reihe $FeCl_3 > SbCl_5 \sim BCl_3 \sim SnCl_4 \geq TiCl_4 > AlCl_3 > ZnCl_2 > HgCl_2 > SbCl_3 > PCl_5$ ab. Dagegen zeigen die potentiometrischen Untersuchungen 6,7 die Reihung $FeCl_3 \geq SbCl_5 \geq BCl_3 > SnCl_4 > AlCl_3 > TiCl_4 > HgCl_2 > ZnCl_2 > PCl_5$. Übereinstimmung herrscht also hinsichtlich der Reihenfolge $FeCl_3 > (SbCl_5, BCl_3) > SnCl_4 > (AlCl_3, TiCl_4) > (HgCl_2, ZnCl_2) > SbCl_3 > PCl_5$. Unstimmigkeiten liegen hinsichtlich der Reihenfolge der Paare $SbCl_5 - BCl_3$,

Tab. 1. Molare Extinktion und Bildungsgrade $\alpha = \frac{c_{[Ph_3C]} + c_{[Ph_3C]} + c_{[Ph$

Chlorid	$10^3 \cdot c$	8	α	K
FeCl ₃	0.46	$3.9 \cdot 10^{-3}$	$1.1 \cdot 10^{-1}$	290
SbCl_5	0,90	$2,20 \cdot 10^{-3}$	$6.1 \cdot 10^{-2}$	110
BCl_3	0,82	$2,50 \cdot 10^{-3}$	$7.0 \cdot 10^{-2}$	100
SnCl_4	0,90	$2,15 \cdot 10^{-3}$	$6.0 \cdot 10^{-2}$	85
${ m TiCl_4}$	0.89			~ 16
$AlCl_3$	2,10	$9.4 \cdot 10^{-2}$	$2,7 \cdot 10^{-2}$	14
$\mathbf{ZnCl_2}$	0.93	$7,23 \cdot 10^{-2}$	$2.1 \cdot 10^{-2}$	12,3
HgCl_2				$\sim 10^{-2}$
$\mathrm{SbCl_3}$				$\sim 10^{-2}$
PCl_5		•		$< 10^{-3}$

AlCl₃ — TiCl₄ und HgCl₂ — ZnCl₂ vor. Es fällt auf, daß ZnCl₂ und TiCl₄ gegenüber Ph₃CCl stärkere Akzeptoren sind als gegenüber Et₄NCl, mit ersterem nur ein Chloridion, mit letzterem jedoch zwei Chloridionen koordinieren. Auch SnCl₄ ist gegenüber Ph₃CCl als Akzeptor dem BCl₃ und SbCl₃ ebenbürtig, während es bei potentiometrischen Titrationen mit Et₄NCl als wesentlich schwächerer Chloridionenakzeptor erscheint. Ähnliche Effekte wurden in Lösungen von PhPOCl₂ festgestellt¹.

II. Lösungen in Tributylphosphat

 ${\rm HgCl_2,\ ZnCl_2,\ BCl_3,\ SnCl_4,\ TiCl_4,\ SbCl_5\ und\ PCl_5\ wurden\ in\ Tributyl-phosphat\ mit\ Triphenylchlormethan\ untersucht.\ AlCl_3\ ist\ weitgehend\ unlöslich,\ die\ anderen\ zeigen\ auch\ bei\ Konzentrationen\ von\ 10^{-2}\ bis$

⁶ V. Gutmann und F. Mairinger, Z. anorg. allg. Chem. 289, 279 (1947); Mh. Chem. 89, 724 (1958); — M. Baaz, V. Gutmann und L. Hübner, Mh. Chem. 91, 694, (1960); — M. Baaz, V. Gutmann, L. Hübner, F. Mairinger und T. S. West, Z. anorg. allg. Chem., im Druck.

⁷ Unveröffentlicht.

 10^{-1} mol/l mit Ph₃CCl keine Farbänderung gegenüber den Lösungen, die die Chloride allein enthalten. Die Ionisationsgrade können nur kleiner als 10^{-4} bis 10^{-5} sein. Demnach erfolgen in Tributylphosphat keine Chloridionenübergänge zwischen Triphenylchlormethan und den Metall-chloriden.

Tab. 2.	Versuche	mit Tr	iphenylch	lormethan	und	Metall chloriden
		in	Tributyl	phosphat		

Chlorid	Konzentrationen	Farbeffekt		
$\mathbf{Z}\mathbf{n}\mathrm{Cl}_2$	$1 \cdot 10^{-3}$, $1.1 \cdot 10^{-2}$	keine Gelbfärbung		
_	$1 \cdot 10^{-3}$, $1,1 \cdot 10^{-2}$ $1 \cdot 10^{-2}$	keine Gelbfärbung		
HgCl_2		Q		
BCI_3	$1 \cdot 10^{-3}, \qquad 2 \cdot 10^{-1}$	keine Gelbfärbung		
AlCl ₃	weder in Gegenwart			
_	noch in Abwesenheit			
	von Ph ₃ CCl löslich	keine Gelbfärbung		
FeCl_{3}	$1\cdot 10^{-2}$	dasselbe Spektrum wie in		
0 0 0		Abwesenheit von Ph ₃ CCl		
$SbCl_3$	$1 \cdot 10^{-3}$, $6 \cdot 10^{-2}$	keine Gelbfärbung		
TiCl_{4}	$1 \cdot 10^{-2}$	dasselbe Spektrum wie in		
11014		Abwesenheit von Ph ₃ CCI		
$SnCl_4$	$1 \cdot 10^{-3}$, $1 \cdot 10^{-1}$	keine Gelbfärbung		
PCl ₅	$1 \cdot 10^{-3}$, $1 \cdot 10^{-1}$	keine Gelbfärbung		
SbCl_5	$1 \cdot 10^{-3}$, $3 \cdot 10^{-1}$	Extinktion wie in Ab-		
	,	wesenheit von Ph ₃ CCl		

III. Der Einfluß des Lösungsmittels auf die Funktion der Chloride als Chloridionenakzeptoren

1. In qualitativer Hinsicht ist ein Einfluß des Lösungsmittels auf die Zahl der ausgetauschten Chloridionen und damit die Art der entstehenden Koordinationsformen möglich, läßt sich jedoch nicht nachweisen. Sowohl in Phosphoroxychlorid als auch in Phenylphosphoroxychlorid¹ sowie in Essigsäure³, Nitroalkanen³,¹¹⁰, Chlorbenzol¹⁰ und Benzol¹⁰ reagieren die untersuchten Metallchloride mit Triarylmethylchloriden ausschließlich im Verhältnis 1:1. Übereinstimmend ist auch das Verhalten von Chloriden hinsichtlich der Reaktionen mit Pseudoalkalichloriden oder mit nichtpolaren anorganischen Chloridionendonoren in Phosphoroxychlorid¹¹¹,

⁸ J. L. Cotter und A. G. Evans, J. Chem. Soc. [London] 1959, 2988.

 $^{^9}$ J. W. Bayles, A. G. Evans und J. R. Jones, J. Chem. Soc. [London] 1955, 206.

¹⁰ J. W. Bayles, A. G. Evans und J. R. Jones, J. Chem. Soc. [London] 1957, 1020.

¹¹ Eine Zusammenfassung wird demnächst veröffentlicht.

Phenylphosphoroxychlorid^{12–14}, Benzoylchlorid¹⁵, Nitrosylchlorid¹⁶ und Thionylchlorid¹⁷. Nur in Tributylphosphat können keine Chloridionen-übergänge nachgewiesen werden.

2. In quantitativer Hinsicht ist ein Einfluß des Lösungsmittels auf die absolute Lage der Akzeptorstärken der Chloride gegeben. In Tab. 3

Tab. 3. Bildungskonstante der Komplexe [Ph₃C]⁺[MeCl_{n+1}]⁻ aus FeCl₃, SbCl₅, BCl₃, SnCl₄, TiCl₄, AlCl₃ und ZnCl₂ in POCl₃, PhPOCl₂ und Bu₃PO₄

Chlorid	In POCl3 (DK = 14)	$\begin{array}{c} \text{In PhPOCl}_{z} \\ (DK = 26) \end{array}$	In Bu_3PO_4 ($DK = 8^{17}a$)
$ZnCl_2$	12	5,3	< 10-4
BCl_3	100	10,8	$< 10^{-4}$
$AlCl_3$	14	0,19	$< 10^{-4}$
$FeCl_3$	290	130	$< 10^{-4}$
${ m TiCl_4}$	16	5,3	$< 10^{-4}$
$SnCl_4$	85	15,5	$< 10^{-4}$
SbCl_5	110	39,4	$< 10^{-4}$

sind die Bildungskonstanten der $[Ph_3C]^+[MeCl_{n+1}]^-$ -Komplexe in Phosphoroxychlorid, Phenylphosphoroxychlorid 1 und Tributylphosphat enthalten. Mit Ausnahme des Quecksilber(II)-chlorids gilt für diese Verbindungen hinsichtlich der Chloridionenakzeptorstärken

$$POCl_3 > PhPOCl_2 \gg Bu_3PO_4$$
.

Da der Chloridionenübergang unter Ionenbildung erfolgt und dem Ionisationsgleichgewicht ein Bjerrumsches Gleichgewicht überlagert sein sollte, muß die Dielektrizitätskonstante die Ionisation stark beeinflussen. Je größer die DK, desto stärker ist die Ionenbildung begünstigt. Die Dielektrizitätskonstante nimmt in der Reihe

$$PhPOCl_2 > POCl_3 > Bu_3PO_4$$

(Tab. 3) ab, kann also die Reihung POCl₃ > PhPOCl₂ nicht erklären. Es muß also (mindestens) eine andere Eigenschaft existieren, die die Chloridionenübergänge in Phosphoroxychlorid begünstigt.

¹² M. Baaz, V. Gutmann und L. Hübner, Mh. Chem. **92**, 135 (1961).

¹³ M. Baaz, V. Gutmann, M. Y. A. Talaat und T. S. West, Mh. Chem. 92, 150 (1961).

¹⁴ M. Baaz, V. Gutmann und T. S. West, Mh. Chem. 92, 164 (1961).

¹⁵ V. Gutmann und H. Tannenberger, Mh. Chem. 88, 292 (1957).

¹⁶ A. B. Burg und D. E. McKenzie, J. Amer. Chem. Soc. 74, 3143 (1952).

A. Spandau und E. Brunneck, Z. anorg. allg. Chem. 270, 201 (1952);
 278, 197 (1955). V. Gutmann und K. N. V. Raman, wird demnächst veröffentlicht.

^{17a} G. K. Estok und W. W. Wendlandt, J. Amer. Chem. Soc. 77, 4768 (1955).

Schon bei früheren Diskussionen 18 wurde die Vermutung ausgesprochen, daß die charakteristische Erscheinung der Chloridionenaddition der Chloride eine Konkurrenz zwischen Lösungsmittel- und Chloridionenkoordination am Akzeptor darstellt. Dabei ist die Bildungstendenz der Chlorokomplexe aus den Chloriden immer gleich, während die Gleichgewichtslage der konkurrierenden Solvatation veränderlich ist. Je stärker die Wechselwirkung Akzeptorchlorid — Lösungsmittel, um so schwächer ist die Fähigkeit der Chloridionenaddition. Bei den hier untersuchten Lösungsmitteln des Typs X_3 PO wäre eine Solvatationsenergie

$$(BuO)_3PO > PhCl_2PO > Cl_3PO$$

zu erwarten.

Lindqvist und Zackrisson¹⁹ haben kürzlich die relative Donorstärke einiger Lewis-Basen durch die Reaktionswärmen von FeCl₃ und SnCl₄ mit Donoren bestimmt. Dabei ergab sich über den Einfluß der Liganden an der P=0-Gruppe, daß die Liganden in der Reihe $RO \geq R > Ph \gg Cl$ die Donorstärke des Sauerstoffes erhöhen. Schon früher war bei den X_3PO -Verbindungen auf röntgenographischem Wege festgestellt worden, daß die Bindung mit Akzeptoren am Sauerstoff erfolgt²⁰. Daraus folgt, daß hinsichtlich der Wechselwirkung der P=0-Gruppe der untersuchten X_3PO -Verbindungen mit Akzeptorchloriden die Abstufung

$$(BuO)_3PO > PhCl_2PO > Cl_3PO$$

gilt. Die Konkurrenz des Lösungsmittels bei der Koordination ist also außer der Dielektrizitätskonstante für die absoluten Akzeptorstärken verantwortlich.

Zu ähnlichen Ergebnissen gelangt man durch eine Analyse der schon früher durch Evans und Mitarbeiter⁸⁻¹⁰ bestimmten Akzeptorstärken einiger Chloride in anderen Lösungsmitteln und deren Vergleich mit den hier diskutierten Ergebnissen. Die Ionisationskonstanten des Triphenylchlormethans bzw. entsprechender substituierter Derivate sind in Nitrokohlenwasserstoffen relativ hoch und dem Kehrwert der Dielektrizitätskonstante einigermaßen proportional ²¹. Die Nitrogruppe ist also eher ein Chloridionenakzeptor und besitzt nur schwach die Eigenschaft einer Lewis-Base. Die Ionisation des Triphenylchlormethans wird ausschließlich von der Dielektrizitätskonstante des Lösungsmittels bestimmt. Anders liegen die Verhältnisse in Gegenwart eines Akzeptorchlorids. In

¹⁸ V. Gutmann und M. Baaz, Z. anorg. allg. Chem. 298, 121 (1959); Angew. Chem. 71, 57 (1959).

¹⁹ I. Lindqvist und M. Zackrisson, Acta Chem. Scand. 14, 453 (1960).

²⁰ I. Lindqvist und C. I. Brändén, Acta Cryst. **12**, 642 (1959); C. I. Brändén und I. Lindqvist, Acta Chem. Scand. **14**, 726 (1960).

²¹ A.G. Evans, A. Price und J. H. Thomas, Trans. Faraday Soc. **50**, 568 (1954).

Tab. 4 sind für das HgCl₂ Bildungskonstanten der [Ph₃C] [HgCl₃]-Komplexe in einigen Lösungsmitteln enthalten. Würden die Akzeptorstärken des Quecksilber(II)-chlorids allein durch die Dielektrizitätskonstante bestimmt sein, müßten die Konstanten in der Reihe PhH \leq PhCl \leq CH₃CO₂H \leq Bu₃PO₄ \leq POCl₃ \leq PhPOCl₂ \leq NO₂CH₃ zunehmen. Statt dessen nehmen sie in der Reihe Bu₃PO₄ \leq POCl₃ \sim CH₃CO₂H \leq PhPOCl₂ \sim PhH \ll PhCl \ll NO₂CH₃ zu.

Die Kombination von Donorstärke und Dielektrizitätskonstante ergibt die Stellung der obigen Reihe. Im Falle des Nitromethans führen hohe

Tab. 4. Vergleich der Bildungskonstanten von $[Ph_3C][HgCl_3]$ -Komplexen in verschiedenen Lösungsmitteln mit deren DK

Lösungsmittel						
POCI ₃	PhPOCl ₂	Bu₃PO₄	CH ₃ CO ₂ H	$\mathrm{NO_{2}CH_{8}}$	PhCl	PhH
14	26	8	6,2	36	5,6	2.3 $4 \cdot 10^{-1}$
	14	14 26	POCl ₃ PhPOCl ₂ Bu ₃ PO ₄ 14 26 8	POCI ₃ PhPOCI ₂ Bu ₃ PO ₄ CH ₃ CO ₂ H 14 26 8 6,2	POCI ₃ PhPOCl ₂ Bu ₃ PO ₄ CH ₃ CO ₂ H NO ₂ CH ₈	POCI ₃ PhPOCl ₂ Bu ₃ PO ₄ CH ₃ CO ₂ H NO ₂ CH ₈ PhCl 14 26 8 6,2 36 5,6

DK und schwache Donorstärke zu einer sehr hohen Bildungskonstante des Komplexes. Bei Chlorbenzol und Benzol heben sich niedrige DK und geringe Donorstärke, beim Phenylphosphoroxychlorid hohe Donorstärke und hohe DK und beim Phosphoroxychlorid mittlere Donorstärke und mittlere DK einigermaßen auf und ergeben mittlere Werte von K. Bei Tributylphosphat und Essigsäure ergänzen sich niedrige DK und hohe Koordinationsaffinität des Lösungsmittels zu extrem kleinen Werten der Chloridionenakzeptorstärken.

3. Eine spezifisch verschiedene Wechselwirkung mit den einzelnen Chloriden zeigt sich in einer Verschiebung der Akzeptorstärken der Chloride gegeneinander und damit einer veränderten relativen Reihung in Phosphoroxychlorid und Phenylphosphoroxychlorid. In PhPOCl₂ ist die Reihung

$$\begin{array}{l} \mathrm{FeCl_3} > \mathrm{SbCl_5} > \mathrm{SnCl_4} > \mathrm{BCl_3} > \mathrm{TiCl_4} \sim \mathrm{ZnCl_2} > \mathrm{HgCl_2} \sim \mathrm{AlCl_3} \\ > \mathrm{SbCl_3} > \mathrm{PCl_5}, \end{array}$$

in POCl₃ dagegen

$$\begin{array}{l} \mathrm{FeCl_3} > \mathrm{BCl_3} \sim \mathrm{SbCl_5} \sim \mathrm{SnCl_4} \geq \mathrm{TiCl_4} > \mathrm{AlCl_3} > \mathrm{ZnCl_2} > \mathrm{HgCl_2} \\ > \mathrm{SbCl_3} > \mathrm{PCl_5}. \end{array}$$

In POCl₃ ist das Spektrum der Akzeptorstärken breiter als in PhPOCl₂. Beiden Lösungsmitteln gemeinsam ist die Reihung FeCl₃ > (BCl₃, SbCl₅, SnCl₄) > TiCl₄ > (ZnCl₂, HgCl₂, AlCl₃) > SbCl₃ > PCl₅, so daß sich die Unterschiede auf folgende Punkte beschränken:

a) BCl₃ und SnCl₄ sind relativ zu den anderen Akzeptoren (z. B. SbCl₃) stärkere Akzeptoren in POCl₃ als in PhPOCl₂. Der Effekt ist beim BCl₃ stärker ausgeprägt als beim SnCl₄.

- b) ZnCl₂ ist relativ zu AlCl₃ ein stärkerer Akzeptor in PhPOCl₂ als in POCl₃; beim AlCl₃ ist es umgekehrt.
- c) HgCl₂ ist als einziges Chlorid nicht nur relativ, sondern auch absolut ein stärkerer Akzeptor in PhPOCl₂ als in POCl₃.

Der Vergleich der Eigenschaften der untersuchten Chloride als Chloridionendonoren in POCl₃ und PhPOCl₂ zeigt dieselben Unterschiede in der Reihung. TiCl₄ zeigt in beiden Lösungsmitteln etwa dieselben Donoreigenschaften, BCl₃ und SnCl₄ sind stärkere Chloridionendonoren in

Tab. 5. Relative Akzeptorstärken (Spalte 1), dargestellt durch das Verhältnis der Bildungskonstanten der [Ph₃C]⁺[MeCl_{n+1}]⁻-Komplexe zur Bildungskonstante des [Ph₃C]⁺[TiCl₅]⁻-Komplexes und relative Donorstärken (Spalte 2), dargestellt durch das Verhältnis der Bildungsgrade α der [MeCl_{n+1}]⁺[FeCl₄]⁻-Komplexe zum Bildungsgrad des [TiCl₃]⁺[FeCl₄]⁻-Komplexes (an Stelle der nicht genügend definierten Konstanten), für die Chloride BCl₃, SnCl₄, ZnCl₂ und HgCl₂. Die Differenzen Δ_1 und Δ_2 (Spalte 3) der Werte in POCl₃ und in PhPOCl₂ haben entgegengesetztes Vorzeichen

1		1		2	3	
Chlorid		$_{n}/K_{\mathrm{TiCl_{4}}}$ In PhPOCl.	ĺ	${ m In~PhPOCl_2}$	Δ_1	Δ_{z}
$\begin{array}{c} \operatorname{BCl_3} \\ \operatorname{SnCl_4} \\ \operatorname{ZnCl_2} \\ \operatorname{HgCl_2} \end{array}$	6,3 6,3 0,77 0,043	2,0 2,9 1,0 0,043	0,23 0,23 1,11 0,38	0,48 0,48 0,76 0,24	' '	$-0.25 \\ -0.25 \\ +0.35 \\ +0.14$

PhPOCl₂ als in POCl₃; ZnCl₂ und HgCl₂ sind dagegen in PhPOCl₂ die relativ schwächeren Donoren. Die Verschiebungen zwischen den Lösungsmitteln POCl₃ und PhPOCl₂ entsprechen sich also gegenseitig vollständig. Ist ein Chlorid in einem Lösungsmittel ein relativ stärkerer Chloridionenakzeptor, so ist er gleichzeitig ein schwächerer Chloridionendonor und umgekehrt. Die reziproken Verschiebungen können nicht auf die unterschiedliche *DK* zurückgehen, denn sie müßten sich nicht nur auf alle Chloride gleich, sondern auch gleichsinnig auf Donor- und Akzeptorfunktion auswirken, da beide zur Ionenbildung führen.

Ein Einfluß der Lösungsmittelkoordination auf die Abgabe von Chloridionen wurde schon früher diskutiert 18,22: je stärker die Wechselwirkung mit dem Lösungsmittel, um so stärker ist die Ionisation des Donor-chlorids. Genau das Gegenteil ist bei der Akzeptorfunktion der Fall. Je stärker hier die Wechselwirkung mit dem Lösungsmittel ist, desto schwächer ist die Chloridionenkoordination. Die Rolle der Lösungs-

²² I. Lindqvist, Acta Chem. Scand. 12, 135 (1958).

mittelkoordination als Regelmechanismus für die Funktion der Chloride als Chloridionendonoren und Chloridionenakzeptoren etwa der Form

ist sehr wahrscheinlich. Die relativen Verschiebungen sind dann durch spezifische Affinitäten der einzelnen Chloride zu den verschiedenen Lösungsmitteln bedingt. Die Übereinstimmung geht natürlich nicht so weit, daß sich absolute Verschiebungen im Donor- und Akzeptorgleichgewicht von Lösungsmittel zu Lösungsmittel oder relative Reihungen von Donor- und Akzeptorstärken in den einzelnen Lösungsmitteln vollständig entsprechen würden. Erstens sind außer der Lösungsmittelkoordination bei der Donor- und Akzeptorfunktion noch andere Einflüsse, und zwar in wechselndem Ausmaß vorhanden, und zweitens ist ein vollständiges Entsprechen von Donor- und Akzeptorfunktion, d. h. von Dissoziationsund Koordinationsbestreben bei jedem einzelnen Chlorid selbst unabhängig vom Lösungsmittel nicht immer zu erwarten.

Unabhängig von den Lösungsmitteln POCl₃ und PhPOCl₂ gelten hinsichtlich der Akzeptorstärke folgende Beziehungen zwischen Chloriden verwandter Elemente: ZnCl₂ > HgCl₂; BCl₃ > AlCl₃; SnCl₄ > TiCl₄; SbCl₅ > PCl₅ und SbCl₅ > SbCl₃. Diesen Kombinationen entsprechen hinsichtlich der Donorstärke AlCl₃ > BCl₃; TiCl₄ > SnCl₄; PCl₅ > SbCl₅; SbCl₃ > SbCl₅. Bei ZnCl₂ und HgCl₂ findet sich diese Reziprozität nicht; ZnCl₂ ist unabhängig vom Lösungsmittel sowohl ein starker Chloridionenakzeptor als auch ein starker Chloridionendonor. Während ZnCl₂ amphoter erscheint, nähert sich HgCl₂ dem Charakter eines inerten Chlorides.

Wir danken der Regierung der USA für die teilweise Unterstützung der Untersuchungen, Herrn Prof. F. Drahowzal für die Überlassung des Triphenylchlormethans und den Victor Chemical Works, Chicago Heights, Ill., für das Tributylphosphat.